Modulation of Acid-sensing Ion Channel 1a by Intracellular pH and Its Role in Ischemic Stroke
نویسندگان
چکیده
منابع مشابه
Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملModulation of acid-sensing ion channel activity by nitric oxide.
Acid-sensing ion channels (ASICs) are a class of ion channels activated by extracellular protons and are believed to mediate the pain caused by tissue acidosis. Although ASICs have been widely studied, little is known about their regulation by inflammatory mediators. Here, we provide evidence that nitric oxide (NO) potentiates the activity of ASICs. Whole-cell patch-clamp recordings were perfor...
متن کاملModulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH.
Acid-sensing ion channels (ASICs), activated by lowering extracellular pH (pH(o)), play an important role in normal synaptic transmission in brain and in the pathology of brain ischemia. Like pH(o), intracellular pH (pH(i)) changes dramatically in both physiological and pathological conditions. Although it is known that a drop in pH(o) activates the ASICs, it is not clear whether alterations of...
متن کاملDeactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.
Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both r...
متن کاملPt718. Histamine Selectively Potentiates Acid-sensing Ion Channel 1a
Although acid-sensitive ion channels (ASICs) play an important role in brain functions, the exact mechanism of their physiological activation remain unclear. A possible answer to the intriguing question is that some presently unknown endogenous ligand(s) positively modulate ASICs and enhance their responses to physiologically significant level. In the present work we found that histamine select...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2016
ISSN: 0021-9258
DOI: 10.1074/jbc.m115.713636